Security
SDK Documentation | Platform Documentation | Usage Examples
The Synthetic Data SDK is a Python toolkit for high-fidelity, privacy-safe Synthetic Data.
The SDK allows you to programmatically create, browse and manage 3 key resources:
Intent | Primitive | API Reference |
---|---|---|
Train a Generator on tabular or language data | g = mostly.train(config) | mostly.train |
Generate any number of synthetic data records | sd = mostly.generate(g, config) | mostly.generate |
Live probe the generator on demand | df = mostly.probe(g, config) | mostly.probe |
Connect to any data source within your org | c = mostly.connect(config) | mostly.connect |
https://github.com/user-attachments/assets/d1613636-06e4-4147-bef7-25bb4699e8fc
Client mode only
pip install -U mostlyai
Client + Local mode
# for CPU on macOS
pip install -U 'mostlyai[local]'
# for CPU on Linux
#pip install -U mostlyai[local-cpu] --extra-index-url https://download.pytorch.org/whl/cpu
# for GPU on Linux
#pip install -U mostlyai[local-gpu]
Optional Connectors
Add any of the following extras for further data connectors support: databricks
, googlebigquery
, hive
, mssql
, mysql
, oracle
, postgres
, snowflake
.
E.g.
pip install -U 'mostlyai[local, databricks, snowflake]'
Generate your first samples based on your own trained generator with a few lines of code. For local mode, initialize the SDK with local=True
. For client mode, initialize the SDK with base_url
and api_key
obtained from your account settings page.
import pandas as pd
from mostlyai.sdk import MostlyAI
# load original data
repo_url = "https://github.com/mostly-ai/public-demo-data/raw/refs/heads/dev"
df_original = pd.read_csv(f"{repo_url}/census/census.csv.gz")
# initialize the SDK in local or client mode
mostly = MostlyAI(local=True) # local mode
# mostly = MostlyAI(base_url='xxx', api_key='xxx') # client mode
# train a synthetic data generator
g = mostly.train(
config={
"name": "US Census Income",
"tables": [
{
"name": "census",
"data": df_original,
"tabular_model_configuration": { # tabular model configuration (optional)
"max_training_time": 1, # - limit training time (in minutes)
# model, max_epochs,,.. # further model configurations (optional)
# 'differential_privacy': { # differential privacy configuration (optional)
# 'max_epsilon': 5.0, # - max epsilon value, used as stopping criterion
# 'delta': 1e-5, # - delta value
# }
},
# columns, keys, compute,.. # further table configurations (optional)
}
],
},
start=True, # start training immediately (default: True)
wait=True, # wait for completion (default: True)
)
# display the quality assurance report
g.reports(display=True)
Once the generator has been trained, you can use it to generate synthetic data samples. Either via probing:
# probe for some representative synthetic samples
df_samples = mostly.probe(g, size=100)
df_samples
or by creating a synthetic dataset entity for larger data volumes:
# generate a large representative synthetic dataset
sd = mostly.generate(g, size=100_000)
df_synthetic = sd.data()
df_synthetic
or by conditionally probing / generating synthetic data:
# create 100 seed records of 24y old Mexicans
df_seed = pd.DataFrame({
'age': [24] * 100,
'native_country': ['Mexico'] * 100,
})
# conditionally probe, based on provided seed
df_samples = mostly.probe(g, seed=df_seed)
df_samples
Please consider citing our project if you find it useful:
@software{mostlyai,
author = {{MOSTLY AI}},
title = {{MOSTLY AI SDK}},
url = {https://github.com/mostly-ai/mostlyai},
year = {2025}
}