Infrastructure
If you like our Framework, don't hesitate to β star this repository β. This helps us to make the Framework more better and scalable to different models and mehods π€.
A modular and efficient retrieval, reranking and RAG framework designed to work with state-of-the-art models for retrieval, ranking and rag tasks.
Rankify is a Python toolkit designed for unified retrieval, re-ranking, and retrieval-augmented generation (RAG) research. Our toolkit integrates 40 pre-retrieved benchmark datasets and supports 7 retrieval techniques, 24 state-of-the-art re-ranking models, and multiple RAG methods. Rankify provides a modular and extensible framework, enabling seamless experimentation and benchmarking across retrieval pipelines. Comprehensive documentation, open-source implementation, and pre-built evaluation tools make Rankify a powerful resource for researchers and practitioners in the field.
Comprehensive Retrieval & Reranking Framework: Rankify unifies retrieval, re-ranking, and retrieval-augmented generation (RAG) into a single modular Python toolkit, enabling seamless experimentation and benchmarking.
Extensive Dataset Support: Includes 40 benchmark datasets with pre-retrieved documents, covering diverse domains such as question answering, dialogue, entity linking, and fact verification.
Diverse Retriever Integration: Supports 7 retrieval techniques, including BM25, DPR, ANCE, BPR, ColBERT, BGE, and Contriever, providing flexibility for various retrieval strategies.
Advanced Re-ranking Models: Implements 24 primary re-ranking models with 41 sub-methods, covering pointwise, pairwise, and listwise re-ranking approaches for enhanced ranking performance.
Prebuilt Retrieval Indices: Provides precomputed Wikipedia and MS MARCO corpora for multiple retrieval models, eliminating indexing overhead and accelerating experiments.
Seamless RAG Integration: Bridges retrieval and generative models (e.g., GPT, LLAMA, T5), enabling retrieval-augmented generation with zero-shot, Fusion-in-Decoder (FiD), and in-context learning strategies.
Modular & Extensible Design: Easily integrates custom datasets, retrievers, re-rankers, and generation models using Rankifyβs structured Python API.
Comprehensive Evaluation Suite: Offers automated performance evaluation with retrieval, ranking, and RAG metrics, ensuring reproducible benchmarking.
User-Friendly Documentation: Detailed π online documentation, example notebooks, and tutorials for easy adoption.
Rankify is still under development, and this is our first release (v0.1.0). While it already supports a wide range of retrieval, re-ranking, and RAG techniques, we are actively enhancing its capabilities by adding more retrievers, rankers, datasets, and features.
Retrievers
Re-Rankers
Datasets
Retrieval-Augmented Generation (RAG)
Evaluation & Usability
Pipeline Integration
First, create and activate a conda environment with Python 3.10:
conda create -n rankify python=3.10
conda activate rankify
we recommend installing Rankify with PyTorch 2.5.1 for Rankify. Refer to the PyTorch installation page for platform-specific installation commands.
If you have access to GPUs, it's recommended to install the CUDA version 12.4 or 12.6 of PyTorch, as many of the evaluation metrics are optimized for GPU use.
To install Pytorch 2.5.1 you can install it from the following cmd
pip install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 --index-url https://download.pytorch.org/whl/cu124
To install Rankify, simply use pip (requires Python 3.10+):
pip install rankify
This will install the base functionality required for retrieval, re-ranking, and retrieval-augmented generation (RAG).
For full functionality, we recommend installing Rankify with all dependencies:
pip install "rankify[all]"
This ensures you have all necessary modules, including retrieval, re-ranking, and RAG support.
If you prefer to install only specific components, choose from the following:
# Install dependencies for retrieval only (BM25, DPR, ANCE, etc.)
pip install "rankify[retriever]"
# Install dependencies for base re-ranking only (excluding vLLM)
pip install "rankify[base]"
# Install base re-ranking with vLLM support for `FirstModelReranker`, `LiT5ScoreReranker`, `LiT5DistillReranker`, `VicunaReranker`, and `ZephyrReranker'.
pip install "rankify[reranking]"
# Install dependencies for retrieval-augmented generation (RAG)
pip install "rankify[rag]"
Or, to install from GitHub for the latest development version:
git clone https://github.com/DataScienceUIBK/rankify.git
cd rankify
pip install -e .
# For full functionality we recommend installing Rankify with all dependencies:
pip install -e ".[all]"
# Install dependencies for retrieval only (BM25, DPR, ANCE, etc.)
pip install -e ".[retriever]"
# Install dependencies for base re-ranking only (excluding vLLM)
pip install -e ".[base]"
# Install base re-ranking with vLLM support for `FirstModelReranker`, `LiT5ScoreReranker`, `LiT5DistillReranker`, `VicunaReranker`, and `ZephyrReranker'.
pip install -e ".[reranking]"
# Install dependencies for retrieval-augmented generation (RAG)
pip install -e ".[rag]"
If you want to use ColBERT Retriever, follow these additional setup steps:
# Install GCC and required libraries
conda install -c conda-forge gcc=9.4.0 gxx=9.4.0
conda install -c conda-forge libstdcxx-ng
# Export necessary environment variables
export LD_LIBRARY_PATH=$CONDA_PREFIX/lib:$LD_LIBRARY_PATH
export CC=gcc
export CXX=g++
export PATH=$CONDA_PREFIX/bin:$PATH
# Clear cached torch extensions
rm -rf ~/.cache/torch_extensions/*
We provide 1,000 pre-retrieved documents per dataset, which you can download from:
π Hugging Face Dataset Repository
The pre-retrieved documents are structured as follows:
[
{
"question": "...",
"answers": ["...", "...", ...],
"ctxs": [
{
"id": "...", // Passage ID from database TSV file
"score": "...", // Retriever score
"has_answer": true|false // Whether the passage contains the answer
}
]
}
]
You can easily download and use pre-retrieved datasets through Rankify.
To see all available datasets:
from rankify.dataset.dataset import Dataset
# Display available datasets
Dataset.avaiable_dataset()
BM25 Retriever Datasets
from rankify.dataset.dataset import Dataset
# Download BM25-retrieved documents for nq-dev
dataset = Dataset(retriever="bm25", dataset_name="nq-dev", n_docs=100)
documents = dataset.download(force_download=False)
# Download BM25-retrieved documents for 2wikimultihopqa-dev
dataset = Dataset(retriever="bm25", dataset_name="2wikimultihopqa-train", n_docs=100)
documents = dataset.download(force_download=False)
# Download BM25-retrieved documents for archivialqa-dev
dataset = Dataset(retriever="bm25", dataset_name="archivialqa-dev", n_docs=100)
documents = dataset.download(force_download=False)
# Download BM25-retrieved documents for archivialqa-test
dataset = Dataset(retriever="bm25", dataset_name="archivialqa-test", n_docs=100)
documents = dataset.download(force_download=False)
# Download BM25-retrieved documents for chroniclingamericaqa-test
dataset = Dataset(retriever="bm25", dataset_name="chroniclingamericaqa-test", n_docs=100)
documents = dataset.download(force_download=False)
# Download BM25-retrieved documents for chroniclingamericaqa-dev
dataset = Dataset(retriever="bm25", dataset_name="chroniclingamericaqa-dev", n_docs=100)
documents = dataset.download(force_download=False)
# Download BM25-retrieved documents for entityquestions-test
dataset = Dataset(retriever="bm25", dataset_name="entityquestions-test", n_docs=100)
documents = dataset.download(force_download=False)
# Download BM25-retrieved documents for ambig_qa-dev
dataset = Dataset(retriever="bm25", dataset_name="ambig_qa-dev", n_docs=100)
documents = dataset.download(force_download=False)
# Download BM25-retrieved documents for ambig_qa-train
dataset = Dataset(retriever="bm25", dataset_name="ambig_qa-train", n_docs=100)
documents = dataset.download(force_download=False)
# Download BM25-retrieved documents for arc-test
dataset = Dataset(retriever="bm25", dataset_name="arc-test", n_docs=100)
documents = dataset.download(force_download=False)
# Download BM25-retrieved documents for arc-dev
dataset = Dataset(retriever="bm25", dataset_name="arc-dev", n_docs=100)
documents = dataset.download(force_download=False)
BGE Retriever Datasets
from rankify.dataset.dataset import Dataset
# Download BGE-retrieved documents for nq-dev
dataset = Dataset(retriever="bge", dataset_name="nq-dev", n_docs=100)
documents = dataset.download(force_download=False)
# Download BGE-retrieved documents for 2wikimultihopqa-dev
dataset = Dataset(retriever="bge", dataset_name="2wikimultihopqa-train", n_docs=100)
documents = dataset.download(force_download=False)
# Download BGE-retrieved documents for archivialqa-dev
dataset = Dataset(retriever="bge", dataset_name="archivialqa-dev", n_docs=100)
documents = dataset.download(force_download=False)
ColBERT Retriever Datasets
from rankify.dataset.dataset import Dataset
# Download ColBERT-retrieved documents for nq-dev
dataset = Dataset(retriever="colbert", dataset_name="nq-dev", n_docs=100)
documents = dataset.download(force_download=False)
# Download ColBERT-retrieved documents for 2wikimultihopqa-dev
dataset = Dataset(retriever="colbert", dataset_name="2wikimultihopqa-train", n_docs=100)
documents = dataset.download(force_download=False)
# Download ColBERT-retrieved documents for archivialqa-dev
dataset = Dataset(retriever="colbert", dataset_name="archivialqa-dev", n_docs=100)
documents = dataset.download(force_download=False)
MSS-DPR Retriever Datasets
from rankify.dataset.dataset import Dataset
# Download MSS-DPR-retrieved documents for nq-dev
dataset = Dataset(retriever="mss-dpr", dataset_name="nq-dev", n_docs=100)
documents = dataset.download(force_download=False)
# Download MSS-DPR-retrieved documents for 2wikimultihopqa-dev
dataset = Dataset(retriever="mss-dpr", dataset_name="2wikimultihopqa-train", n_docs=100)
documents = dataset.download(force_download=False)
# Download MSS-DPR-retrieved documents for archivialqa-dev
dataset = Dataset(retriever="mss-dpr", dataset_name="archivialqa-dev", n_docs=100)
documents = dataset.download(force_download=False)
MSS Retriever Datasets
from rankify.dataset.dataset import Dataset
# Download MSS-retrieved documents for nq-dev
dataset = Dataset(retriever="mss", dataset_name="nq-dev", n_docs=100)
documents = dataset.download(force_download=False)
# Download MSS-retrieved documents for 2wikimultihopqa-dev
dataset = Dataset(retriever="mss", dataset_name="2wikimultihopqa-train", n_docs=100)
documents = dataset.download(force_download=False)
# Download MSS-retrieved documents for archivialqa-dev
dataset = Dataset(retriever="mss", dataset_name="archivialqa-dev", n_docs=100)
documents = dataset.download(force_download=False)
Contriever Retriever Datasets
from rankify.dataset.dataset import Dataset
# Download MSS-retrieved documents for nq-dev
dataset = Dataset(retriever="contriever", dataset_name="nq-dev", n_docs=100)
documents = dataset.download(force_download=False)
# Download MSS-retrieved documents for 2wikimultihopqa-dev
dataset = Dataset(retriever="contriever", dataset_name="2wikimultihopqa-train", n_docs=100)
documents = dataset.download(force_download=False)
# Download MSS-retrieved documents for archivialqa-dev
dataset = Dataset(retriever="contriever", dataset_name="archivialqa-dev", n_docs=100)
documents = dataset.download(force_download=False)
ANCE Retriever Datasets
from rankify.dataset.dataset import Dataset
# Download ANCE-retrieved documents for nq-dev
dataset = Dataset(retriever="ance", dataset_name="nq-dev", n_docs=100)
documents = dataset.download(force_download=False)
# Download ANCE-retrieved documents for 2wikimultihopqa-dev
dataset = Dataset(retriever="ance", dataset_name="2wikimultihopqa-train", n_docs=100)
documents = dataset.download(force_download=False)
# Download ANCE-retrieved documents for archivialqa-dev
dataset = Dataset(retriever="ance", dataset_name="archivialqa-dev", n_docs=100)
documents = dataset.download(force_download=False)
Load Pre-retrieved Dataset from File
If you have already downloaded a dataset, you can load it directly:
from rankify.dataset.dataset import Dataset
# Load pre-downloaded BM25 dataset for WebQuestions
documents = Dataset.load_dataset('./tests/out-datasets/bm25/web_questions/test.json', 100)
Now, you can integrate retrieved documents with re-ranking and RAG workflows! π
The following table provides an overview of the availability of different retrieval methods (BM25, DPR, ColBERT, ANCE, BGE, Contriever) for each dataset.
β
Completed
π Pending
Dataset | BM25 | DPR | ColBERT | ANCE | BGE | Contriever |
---|---|---|---|---|---|---|
2WikimultihopQA | β | π | π | π | π | π |
ArchivialQA | β | π | π | π | π | π |
ChroniclingAmericaQA | β | π | π | π | π | π |
EntityQuestions | β | π | π | π | π | π |
AmbigQA | β | π | π | π | π | π |
ARC | β | π | π | π | π | π |
ASQA | β | π | π | π | π | π |
MS MARCO | π | π | π | π | π | π |
AY2 | β | π | π | π | π | π |
Bamboogle | β | π | π | π | π | π |
BoolQ | β | π | π | π | π | π |
CommonSenseQA | β | π | π | π | π | π |
CuratedTREC | β | π | π | π | π | π |
ELI5 | β | π | π | π | π | π |
FERMI | β | π | π | π | π | π |
FEVER | β | π | π | π | π | π |
HellaSwag | β | π | π | π | π | π |
HotpotQA | β | π | π | π | π | π |
MMLU | β | π | π | π | π | π |
Musique | β | π | π | π | π | π |
NarrativeQA | β | π | π | π | π | π |
NQ | β | π | π | π | π | π |
OpenbookQA | β | π | π | π | π | π |
PIQA | β | π | π | π | π | π |
PopQA | β | π | π | π | π | π |
Quartz | β | π | π | π | π | π |
SIQA | β | π | π | π | π | π |
StrategyQA | β | π | π | π | π | π |
TREX | β | π | π | π | π | π |
TriviaQA | β | π | π | π | π | π |
TruthfulQA | β | π | π | π | π | π |
TruthfulQA | β | π | π | π | π | π |
WebQ | β | π | π | π | π | π |
WikiQA | β | π | π | π | π | π |
WikiAsp | β | π | π | π | π | π |
WikiPassageQA | β | π | π | π | π | π |
WNED | β | π | π | π | π | π |
WoW | β | π | π | π | π | π |
Zsre | β | π | π | π | π | π |
To perform retrieval using Rankify, you can choose from various retrieval methods such as BM25, DPR, ANCE, Contriever, ColBERT, and BGE.
Example: Running Retrieval on Sample Queries
from rankify.dataset.dataset import Document, Question, Answer, Context
from rankify.retrievers.retriever import Retriever
# Sample Documents
documents = [
Document(question=Question("the cast of a good day to die hard?"), answers=Answer([
"Jai Courtney",
"Sebastian Koch",
"Radivoje BukviΔ",
"Yuliya Snigir",
"Sergei Kolesnikov",
"Mary Elizabeth Winstead",
"Bruce Willis"
]), contexts=[]),
Document(question=Question("Who wrote Hamlet?"), answers=Answer(["Shakespeare"]), contexts=[])
]
# BM25 retrieval on Wikipedia
bm25_retriever_wiki = Retriever(method="bm25", n_docs=5, index_type="wiki")
# BM25 retrieval on MS MARCO
bm25_retriever_msmacro = Retriever(method="bm25", n_docs=5, index_type="msmarco")
# DPR (multi-encoder) retrieval on Wikipedia
dpr_retriever_wiki = Retriever(method="dpr", model="dpr-multi", n_docs=5, index_type="wiki")
# DPR (multi-encoder) retrieval on MS MARCO
dpr_retriever_msmacro = Retriever(method="dpr", model="dpr-multi", n_docs=5, index_type="msmarco")
# DPR (single-encoder) retrieval on Wikipedia
dpr_retriever_wiki = Retriever(method="dpr", model="dpr-single", n_docs=5, index_type="wiki")
# DPR (single-encoder) retrieval on MS MARCO
dpr_retriever_msmacro = Retriever(method="dpr", model="dpr-single", n_docs=5, index_type="msmarco")
# ANCE retrieval on Wikipedia
ance_retriever_wiki = Retriever(method="ance", model="ance-multi", n_docs=5, index_type="wiki")
# ANCE retrieval on MS MARCO
ance_retriever_msmacro = Retriever(method="ance", model="ance-multi", n_docs=5, index_type="msmarco")
# Contriever retrieval on Wikipedia
contriever_retriever_wiki = Retriever(method="contriever", model="facebook/contriever-msmarco", n_docs=5, index_type="wiki")
# Contriever retrieval on MS MARCO
contriever_retriever_msmacro = Retriever(method="contriever", model="facebook/contriever-msmarco", n_docs=5, index_type="msmarco")
# ColBERT retrieval on Wikipedia
colbert_retriever_wiki = Retriever(method="colbert", model="colbert-ir/colbertv2.0", n_docs=5, index_type="wiki")
# ColBERT retrieval on MS MARCO
colbert_retriever_msmacro = Retriever(method="colbert", model="colbert-ir/colbertv2.0", n_docs=5, index_type="msmarco")
# BGE retrieval on Wikipedia
bge_retriever_wiki = Retriever(method="bge", model="BAAI/bge-large-en-v1.5", n_docs=5, index_type="wiki")
# BGE retrieval on MS MARCO
bge_retriever_msmacro = Retriever(method="bge", model="BAAI/bge-large-en-v1.5", n_docs=5, index_type="msmarco")
Running Retrieval
After defining the retriever, you can retrieve documents using:
retrieved_documents = bm25_retriever_wiki.retrieve(documents)
for i, doc in enumerate(retrieved_documents):
print(f"\nDocument {i+1}:")
print(doc)
Rankify provides support for multiple reranking models. Below are examples of how to use each model.
** Example: Reranking a Document**
from rankify.dataset.dataset import Document, Question, Answer, Context
from rankify.models.reranking import Reranking
# Sample document setup
question = Question("When did Thomas Edison invent the light bulb?")
answers = Answer(["1879"])
contexts = [
Context(text="Lightning strike at Seoul National University", id=1),
Context(text="Thomas Edison tried to invent a device for cars but failed", id=2),
Context(text="Coffee is good for diet", id=3),
Context(text="Thomas Edison invented the light bulb in 1879", id=4),
Context(text="Thomas Edison worked with electricity", id=5),
]
document = Document(question=question, answers=answers, contexts=contexts)
# Initialize the reranker
reranker = Reranking(method="monot5", model_name="monot5-base-msmarco")
# Apply reranking
reranker.rank([document])
# Print reordered contexts
for context in document.reorder_contexts:
print(f" - {context.text}")
Examples of Using Different Reranking Models
# UPR
model = Reranking(method='upr', model_name='t5-base')
# API-Based Rerankers
model = Reranking(method='apiranker', model_name='voyage', api_key='your-api-key')
model = Reranking(method='apiranker', model_name='jina', api_key='your-api-key')
model = Reranking(method='apiranker', model_name='mixedbread.ai', api_key='your-api-key')
# Blender Reranker
model = Reranking(method='blender_reranker', model_name='PairRM')
# ColBERT Reranker
model = Reranking(method='colbert_ranker', model_name='Colbert')
# EchoRank
model = Reranking(method='echorank', model_name='flan-t5-large')
# First Ranker
model = Reranking(method='first_ranker', model_name='base')
# FlashRank
model = Reranking(method='flashrank', model_name='ms-marco-TinyBERT-L-2-v2')
# InContext Reranker
Reranking(method='incontext_reranker', model_name='llamav3.1-8b')
# InRanker
model = Reranking(method='inranker', model_name='inranker-small')
# ListT5
model = Reranking(method='listt5', model_name='listt5-base')
# LiT5 Distill
model = Reranking(method='lit5distill', model_name='LiT5-Distill-base')
# LiT5 Score
model = Reranking(method='lit5score', model_name='LiT5-Distill-base')
# LLM Layerwise Ranker
model = Reranking(method='llm_layerwise_ranker', model_name='bge-multilingual-gemma2')
# LLM2Vec
model = Reranking(method='llm2vec', model_name='Meta-Llama-31-8B')
# MonoBERT
model = Reranking(method='monobert', model_name='monobert-large')
# MonoT5
Reranking(method='monot5', model_name='monot5-base-msmarco')
# RankGPT
model = Reranking(method='rankgpt', model_name='llamav3.1-8b')
# RankGPT API
model = Reranking(method='rankgpt-api', model_name='gpt-3.5', api_key="gpt-api-key")
model = Reranking(method='rankgpt-api', model_name='gpt-4', api_key="gpt-api-key")
model = Reranking(method='rankgpt-api', model_name='llamav3.1-8b', api_key="together-api-key")
model = Reranking(method='rankgpt-api', model_name='claude-3-5', api_key="claude-api-key")
# RankT5
model = Reranking(method='rankt5', model_name='rankt5-base')
# Sentence Transformer Reranker
model = Reranking(method='sentence_transformer_reranker', model_name='all-MiniLM-L6-v2')
model = Reranking(method='sentence_transformer_reranker', model_name='gtr-t5-base')
model = Reranking(method='sentence_transformer_reranker', model_name='sentence-t5-base')
model = Reranking(method='sentence_transformer_reranker', model_name='distilbert-multilingual-nli-stsb-quora-ranking')
model = Reranking(method='sentence_transformer_reranker', model_name='msmarco-bert-co-condensor')
# SPLADE
model = Reranking(method='splade', model_name='splade-cocondenser')
# Transformer Ranker
model = Reranking(method='transformer_ranker', model_name='mxbai-rerank-xsmall')
model = Reranking(method='transformer_ranker', model_name='bge-reranker-base')
model = Reranking(method='transformer_ranker', model_name='bce-reranker-base')
model = Reranking(method='transformer_ranker', model_name='jina-reranker-tiny')
model = Reranking(method='transformer_ranker', model_name='gte-multilingual-reranker-base')
model = Reranking(method='transformer_ranker', model_name='nli-deberta-v3-large')
model = Reranking(method='transformer_ranker', model_name='ms-marco-TinyBERT-L-6')
model = Reranking(method='transformer_ranker', model_name='msmarco-MiniLM-L12-en-de-v1')
# TwoLAR
model = Reranking(method='twolar', model_name='twolar-xl')
# Vicuna Reranker
model = Reranking(method='vicuna_reranker', model_name='rank_vicuna_7b_v1')
# Zephyr Reranker
model = Reranking(method='zephyr_reranker', model_name='rank_zephyr_7b_v1_full')
Rankify provides a Generator Module to facilitate retrieval-augmented generation (RAG) by integrating retrieved documents into generative models for producing answers. Below is an example of how to use different generator methods.
from rankify.dataset.dataset import Document, Question, Answer, Context
from rankify.generator.generator import Generator
# Define question and answer
question = Question("What is the capital of France?")
answers = Answer(["Paris"])
contexts = [
Context(id=1, title="France", text="The capital of France is Paris.", score=0.9),
Context(id=2, title="Germany", text="Berlin is the capital of Germany.", score=0.5)
]
# Construct document
doc = Document(question=question, answers=answers, contexts=contexts)
# Initialize Generator (e.g., Meta Llama)
generator = Generator(method="in-context-ralm", model_name='meta-llama/Llama-3.1-8B')
# Generate answer
generated_answers = generator.generate([doc])
print(generated_answers) # Output: ["Paris"]
Rankify provides built-in evaluation metrics for retrieval, re-ranking, and retrieval-augmented generation (RAG). These metrics help assess the quality of retrieved documents, the effectiveness of ranking models, and the accuracy of generated answers.
Evaluating Generated Answers
You can evaluate the quality of retrieval-augmented generation (RAG) results by comparing generated answers with ground-truth answers.
from rankify.metrics.metrics import Metrics
from rankify.dataset.dataset import Dataset
# Load dataset
dataset = Dataset('bm25', 'nq-test', 100)
documents = dataset.download(force_download=False)
# Initialize Generator
generator = Generator(method="in-context-ralm", model_name='meta-llama/Llama-3.1-8B')
# Generate answers
generated_answers = generator.generate(documents)
# Evaluate generated answers
metrics = Metrics(documents)
print(metrics.calculate_generation_metrics(generated_answers))
Evaluating Retrieval Performance
# Calculate retrieval metrics before reranking
metrics = Metrics(documents)
before_ranking_metrics = metrics.calculate_retrieval_metrics(ks=[1, 5, 10, 20, 50, 100], use_reordered=False)
print(before_ranking_metrics)
Evaluating Reranked Results
# Calculate retrieval metrics after reranking
after_ranking_metrics = metrics.calculate_retrieval_metrics(ks=[1, 5, 10, 20, 50, 100], use_reordered=True)
print(after_ranking_metrics)
For full API documentation, visit the Rankify Docs.
Follow these steps to get involved:
Fork this repository to your GitHub account.
Create a new branch for your feature or fix:
git checkout -b feature/YourFeatureName
Make your changes and commit them:
git commit -m "Add YourFeatureName"
Push the changes to your branch:
git push origin feature/YourFeatureName
Submit a Pull Request to propose your changes.
Thank you for helping make this project better!
Rankify is licensed under the Apache-2.0 License - see the LICENSE file for details.
We would like to express our gratitude to the following libraries, which have greatly contributed to the development of Rankify:
Rerankers β A powerful Python library for integrating various reranking methods.
π GitHub Repository
Pyserini β A toolkit for supporting BM25-based retrieval and integration with sparse/dense retrievers.
π GitHub Repository
FlashRAG β A modular framework for Retrieval-Augmented Generation (RAG) research.
π GitHub Repository
Please kindly cite our paper if helps your research:
@article{abdallah2025rankify,
title={Rankify: A Comprehensive Python Toolkit for Retrieval, Re-Ranking, and Retrieval-Augmented Generation},
author={Abdallah, Abdelrahman and Mozafari, Jamshid and Piryani, Bhawna and Ali, Mohammed and Jatowt, Adam},
journal={arXiv preprint arXiv:2502.02464},
year={2025}
}