RAGBuilder

0

A toolkit to create optimal Production-ready RAG setup for your data

Productivity

rag
genai
developer-tools

RagBuilder logo RagBuilder logo

made-with-python GitHub release GitHub license GitHub commits

11926

RagBuilder is a toolkit that helps you create optimal Production-ready Retrieval-Augmented-Generation (RAG) setup for your data automatically. By performing hyperparameter tuning on various RAG parameters (Eg: chunking strategy: semantic, character etc., chunk size: 1000, 2000 etc.), RagBuilder evaluates these configurations against a test dataset to identify the best-performing setup for your data. Additionally, RagBuilder includes several state-of-the-art, pre-defined RAG templates that have shown strong performance across diverse datasets. So just bring your data, and RagBuilder will generate a production-grade RAG setup in just minutes.

Features

  • Hyperparameter Tuning: Efficiently optimize your RAG configurations using Bayesian optimization
  • Pre-defined RAG Templates: Use state-of-the-art templates that have demonstrated strong performance Eg: Graph retriever, Contextual chunker etc.)
  • Evaluation Dataset Options: Generate synthetic test dataset or provide your own
  • Component Access: Direct access to vectorstore, retriever, and generator components
  • API Deployment: Easily deploy as an API service
  • Project Persistence: Save and load optimized RAG pipelines

Installation

# Create a new venv
uv venv ragbuilder

# Activate the new venv
source ragbuilder/bin/activate

# Install
uv pip install ragbuilder

See other installation options here (link)

Quick Start

from ragbuilder import RAGBuilder

# Initialize and optimize with defaults
builder = RAGBuilder.from_source_with_defaults(input_source='https://lilianweng.github.io/posts/2023-06-23-agent/')
results = builder.optimize()

# Run a query through the complete pipeline
response = results.invoke("What is HNSW?")

# View optimization summary
print(results.summary())

Setting Default Models

You can specify default LLM and embedding models that will be used throughout the pipeline:

from langchain_openai import AzureChatOpenAI, AzureOpenAIEmbeddings

# Initialize with custom defaults
builder = RAGBuilder.from_source_with_defaults(
    input_source='data.pdf',
    default_llm=AzureChatOpenAI(model="gpt-4o", temperature=0.0),
    default_embeddings=AzureOpenAIEmbeddings(model="text-embedding-3-large"),
    n_trials=20  # Set number of optimization trials
)

# Or when creating a RAGBuilder instance with fine grained custom configuration
builder = RAGBuilder(
    data_ingest_config=data_ingest_config, # Custom Data Ingestion parameters
    default_llm=AzureChatOpenAI(model="gpt-4o", temperature=0.0),
    default_embeddings=AzureOpenAIEmbeddings(model="text-embedding-3-large")
)

Configuration Guide

Basic Configuration

For most use cases, the default configuration provides good results:

builder = RAGBuilder.from_source_with_defaults(
    input_source='path/to/your/data',
    test_dataset='path/to/test/data'  # Optional
)

Advanced Configuration

For fine-grained control over your RAG pipeline, you can customize every aspect:

from ragbuilder.config import (
    DataIngestOptionsConfig,
    RetrievalOptionsConfig,
    GenerationOptionsConfig
)

# Configure data ingestion
data_ingest_config = DataIngestOptionsConfig(
    input_source="data.pdf",
    document_loaders=[
        {"type": "pymupdf"},
        {"type": "unstructured"}
    ],
    chunking_strategies=[{
        "type": "RecursiveCharacterTextSplitter",
        "chunker_kwargs": {"separators": ["\n\n", "\n", " ", ""]}
    }],
    chunk_size={"min": 500, "max": 2000, "stepsize": 500},
    embedding_models=[{
        "type": "openai",
        "model_kwargs": {"model": "text-embedding-3-large"}
    }]
)

# Initialize with custom configs
builder = RAGBuilder(
    data_ingest_config=data_ingest_config,
    default_llm=AzureChatOpenAI(model="gpt-4o", temperature=0.0),
    default_embeddings=AzureOpenAIEmbeddings(model="text-embedding-3-large")
)

# Run individual module level optimization
builder.optimize_data_ingest()


# Configure retrieval options
retrieval_config = RetrievalOptionsConfig(
    retrievers=[
        {
            "type": "vector_similarity",
            "retriever_k": [20],
            "weight": 0.5
        },
        {
            "type": "bm25",
            "retriever_k": [20],
            "weight": 0.5
        }
    ],
    rerankers=[{
        "type": "BAAI/bge-reranker-base"
    }],
    top_k=[3, 5]
)


# Run retrieval optimization with custom config
builder.optimize_retrieval(retrieval_config)

# Configure Generation related options
gen_config = GenerationOptionsConfig(
    llms = [
        LLMConfig(type="azure_openai", model_kwargs={'model':'gpt-4o-mini', 'temperature':0.2}),
        LLMConfig(type="azure_openai", model_kwargs={'model':'gpt-4o', 'temperature':0.2}),
    ],
    optimization={
        "n_trials": 10, 
        "n_jobs": 1,
        "study_name": "lillog_agents_study",
        "optimization_direction": "maximize"
    },
    evaluation_config={"type": "ragas"},
)

# Run generation optimization with custom config
builder.optimize_generation(gen_config)

results = builder.optimization_results
response = adv_results.invoke("What is HNSW?")

Component Options Reference

Document Loaders

  • unstructured: General-purpose loader
  • pymupdf: Optimized for PDFs
  • pypdf: Alternative PDF loader
  • web: Web page loader
  • Custom loaders via custom_class

Chunking Strategies

  • RecursiveCharacterTextSplitter: Recursive character text splitter
  • CharacterTextSplitter: Character text splitter
  • MarkdownHeaderTextSplitter: Markdown-header based splitter
  • HTMLHeaderTextSplitter: HTML-header based splitter
  • SemanticChunker: Semantic chunker
  • TokenTextSplitter: Token-based splitter
  • Custom splitters via custom_class

Retrievers

  • vector_similarity: Vector similarity search
  • vector_mmr: Vector MMR search
  • bm25: Keyword-based search using BM25
  • multi_query: Multi-query retrievers
  • parent_doc_full: Parent document full-doc retrieval
  • parent_doc_large: Parent document large-chunks retrieval
  • graph: Graph-based retrieval (requires Neo4j)
  • Custom retrievers via custom_class

Rerankers

  • BAAI/bge-reranker-base: BGE base reranker
  • mixedbread-ai/mxbai-rerank-base-v1: mxbai reranker base v1
  • mixedbread-ai/mxbai-rerank-large-v1: mxbai reranker large v1
  • cohere: Cohere's reranking model
  • jina: Jina reranker
  • flashrank: Flaskrank reranker
  • rankllm: RankLLM reranker
  • colbert: Colbert reranker
  • Custom rerankers via custom_class

Environment Variables

Create a .env file in your project directory:

# Required
OPENAI_API_KEY=your_key_here

# Optional - For additional features
MISTRAL_API_KEY=your_key_here
COHERE_API_KEY=your_key_here
AZURE_OPENAI_API_KEY=your_key_here
AZURE_OPENAI_ENDPOINT=your_endpoint_here

# For Graph-based RAG
NEO4J_URI=bolt://localhost:7687
NEO4J_USERNAME=neo4j
NEO4J_PASSWORD=your_password

Advanced Topics

Custom Evaluation Metrics

from ragbuilder import EvaluationConfig

config = EvaluationConfig(
    type="custom",
    custom_class="your_module.CustomEvaluator",
    evaluator_kwargs={
        "metrics": ["precision", "recall", "f1_score"]
    }
)

Optimization Configuration

Fine-tune the optimization parameters:

from ragbuilder import OptimizationConfig

config = OptimizationConfig(
    n_trials=20,
    n_jobs=1,
    study_name="my_optimization",
    optimization_direction="maximize"
)

API Deployment

RAGBuilder can be deployed as an API service:

# Initialize and optimize
builder = RAGBuilder.from_source_with_defaults('data.pdf')
results = builder.optimize()

# Deploy as API
builder.serve(host="0.0.0.0", port=8000)

Access via:

  • POST /query - Run queries through the RAG pipeline

Project Management

Save and load optimized RAG pipelines:

# Save project
builder.save('rag_project/')

# Load existing project
builder = RAGBuilder.load('rag_project/')

# Access components
vectorstore = builder.data_ingest.get_vectorstore()
retriever = builder.retrieval.get_retriever()
generator = builder.generation.get_generator()

Best Practices

  1. Start Simple

    • Begin with from_source_with_defaults()
    • Add complexity only when needed
  2. Test Data Quality

    • Provide representative test queries
    • Use domain-specific evaluation metrics
  3. Resource Management

    • Monitor memory usage with large datasets
    • Use chunking for large documents
  4. Production Deployment

    • Save optimized projects for reuse
    • Monitor API performance metrics
    • Implement rate limiting for API endpoints

Usage Analytics

We collect anonymous usage metrics to improve RAGBuilder:

  • Number of optimization runs
  • Success/failure rates
  • No personal or business data is collected

To opt-out set ENABLE_ANALYTICS=False in .env:

Contributing

We welcome contributions! See CONTRIBUTING.md for guidelines.

License

This project is licensed under the MIT License - see the LICENSE file for details.