Infrastructure
Vue inside Phoenix LiveView with seamless end-to-end reactivity.
After installation, you can use Vue components in the same way as you'd use functional LiveView components. You can even handle Vue events with JS
hooks! All the phx-click
, phx-change
attributes works inside Vue components as well.
<script setup lang="ts">
import {ref} from "vue"
const props = defineProps<{count: number}>()
const emit = defineEmits<{inc: [{value: number}]}>()
const diff = ref<string>("1")
</script>
<template>
Current count
<div class="text-2xl text-bold">{{ props.count }}</div>
<label class="block mt-8">Diff: </label>
<input v-model="diff" class="my-4" type="range" min="1" max="10" />
<button
@click="emit('inc', {value: parseInt(diff)})"
class="bg-black text-white rounded p-2"
>
Increase counter by {{ diff }}
</button>
</template>
defmodule LiveVueExamplesWeb.LiveCounter do
use LiveVueExamplesWeb, :live_view
def render(assigns) do
~H"""
<.vue
count={@count}
v-component="Counter"
v-socket={@socket}
v-on:inc={JS.push("inc")}
/>
"""
end
def mount(_params, _session, socket) do
{:ok, assign(socket, :count, 0)}
end
def handle_event("inc", %{"value" => diff}, socket) do
{:noreply, update(socket, :count, &(&1 + diff))}
end
end
Phoenix Live View makes it possible to create rich, interactive web apps without writing JS.
But once you'll need to do anything even slightly complex on the client-side, you'll end up writing lots of imperative, hard-to-maintain hooks.
LiveVue allows to create hybrid apps, where part of the session state is on the server and part on the client.
See Installation.
By default, vue components should be placed either inside assets/vue
directory or colocated with your Elixir files. You can configure that behaviour by changing assets/vue/index.js
and use LiveVue.Components, vue_root: ["your/vue/dir"]
.
To render vue component from HEEX, you have to use <.vue>
function with these attributes:
Attribute | Example | Required | Description |
---|---|---|---|
v-component | v-component="Counter" , v-component="helpers/modal" | yes | Name of the component to render. Must match key defined in components passed to getHooks . By default you can use both filename or a full file path without extension, relative to assets/vue or lib/my_app_web |
v-socket | v-socket={@socket} | Yes in LiveView | Used to determine if SSR is needed. Should be always included in LiveViews |
v-ssr | v-ssr={true} | no | Defaults to Application.get_env(:live_vue, :ssr, true) |
v-on:event={@handler} | v-on:close={JS.toggle()} | no | Handle component event by invoking JS hook. @handler has to come from JS module. See Usage section for more. |
prop={@value} | name="liveVue" , count={@count} , {%{count: 123}} | no | All other attributes will be passed to vue component as props. Values have to be serializable to JSON, so structures have to implement Jason.Encoder protocol. |
Instead of writing <.vue v-component="Counter">
you can use shortcut <.Counter>
. Function names are generated based on filenames of found .vue
files, so assets/vue/helpers/nested/Modal.vue
will generate helper <.Modal>
. If there are multiple .vue
files with equal names, use <.vue v-component="path/to/file">
You pass props in the same way as with functional components in Elixir. All 3 examples does exactly the same.
<.vue
count={@count}
name={@name}
v-component="Counter"
v-socket={@socket}
/>
<.vue
v-component="Counter"
v-socket={@socket}
{%{count: @count, name: @name}}
/>
<.Counter
count={@count}
name={@name}
v-socket={@socket}
/>
All regular phoenix hooks like phx-click
, phx-submit
work as expected.
To keep components DRY you can define vue handlers using v-on:eventname={JS.handler()}
syntax.
All attributes starting with v-on:
are attached as emit handlers to Vue components and executed in the same way as Phoenix does it.
JS.push("someName")
is a special case - if JS.push defines no value, it will be replaced by the emit payload.
<.vue v-on:submit={JS.push("submit")} v-component="SomeForm" v-socket={@socket} />
<.vue
v-on:shoot={JS.push("shoot")}
v-on:close={JS.hide()}
v-component="SomeGame"
v-socket={@socket}
/>
You can even pass slots to the vue component! They're passed to vue as raw HTML, so hooks in the slots won't work. Each slot is wrapped in a div due to technical limitations.
:inner_block
and rendered inside Vue components as <slot />
.<:slot_name>Content</:slot_name>
syntax are rendered using <slot name="slot_name" />
syntax.An example:
<.Card title="The coldest sunset" v-socket={@socket}>
<p>This is card content passed from phoenix!</p>
<p>Even icons are working! <.icon name="hero-information-circle-mini" /></p>
<:footer>And this is a footer from phoenix</:footer>
</.Card>
<template>
<slot></slot>
Footer:
<slot name="footer"></slot>
</template>
LiveVue provides a <Link />
component that can be imported to support navigation between live views and other pages.
It maintains the same API, with a minor difference (see the WARNING after this section), as the <.link />
component provided by Phoenix.
Here is a quick breakdown:
<Link href="...">
is HTTP-based, work everywhere, and perform full page reloads<Link navigate="...">
work across LiveViews in the same session. They mount a new LiveView while keeping the current layout<Link patch="...">
updates the current LiveView and sends only the minimal diff while also maintaining the scroll position<template>
<Link patch="/same-live-view">Patch link</Link>
<Link patch="/same-live-view" replace>Patch link (with replace)</Link>
<Link navigate="/another-live-view">Navigate link</Link>
<Link navigate="/another-live-view" replace>Navigate link (with replace)</Link>
<Link href="/normal-link">Normal link</Link>
</template>
<script setup>
import { Link } from 'live_vue';
</script>
[!WARNING] We don't support
method
&csrf
props from the original<.link />
component.
LiveVue provides testing utilities through the LiveVue.Test
module that make it easy to test your Vue components. You can extract and verify component properties, event handlers, slots, and more:
# Test a specific component
{:ok, view, _html} = live(conn, "/")
vue = LiveVue.Test.get_vue(view, name: "Counter")
# Verify component properties
assert vue.component == "Counter"
assert vue.props["count"] == 0
assert vue.handlers["inc"] == JS.push("inc")
See LiveVue.Test documentation for more details.
You can use <.vue>
components in dead views. Of course, there will be no updates on assign changes, since there is no websocket connection established to support it.
v-socket={@socket} is not required in dead views.
Vue SSR is compiled down into string concatenation, so it's quite fast 😉
In development it's recommended to use config :live_vue, ssr_module: LiveVue.SSR.ViteJS
. It does HTTP call to vite /ssr_render
endpoint added by LiveVue plugin, which in turn uses vite ssrLoadModule for efficient compilation.
In production it's recommended to use config :live_vue, ssr_module: LiveVue.SSR.NodeJS
which uses NodeJS
package directly talking with a JS process with a in-memory server bundle. By default, SSR bundle is saved to priv/vue/server.js
.
You can use function useLiveVue
to access root phoenix element where Vue component was routed.
API of that object is described in Phoenix docs.
Example
<script>
import {useLiveVue} from "live_vue"
const hook = useLiveVue()
hook.pushEvent("hello", {value: "from Vue"})
</script>
We can go one step further and use LiveVue as an alternative to the standard LiveView DSL. This idea is taken from LiveSvelte
.
Take a look at the following example:
defmodule ExampleWeb.LiveSigil do
use ExampleWeb, :live_view
def render(assigns) do
~V"""
<script setup lang="ts">
import {ref} from "vue"
const props = defineProps<{count: number}>()
const diff = ref<number>(1)
</script>
<template>
Current count
<div class="text-2xl text-bold">{{ props.count }}</div>
<label class="block mt-8">Diff: </label>
<input v-model="diff" class="mt-4" type="range" min="1" max="10">
<button
phx-click="inc"
:phx-value-diff="diff"
class="mt-4 bg-black text-white rounded p-2 block">
Increase counter {{ diff }}
</button>
</template>
"""
end
def mount(_params, _session, socket) do
{:ok, assign(socket, count: 0)}
end
def handle_event("inc", %{"diff" => diff}, socket) do
{:noreply, update(socket, :count, &(&1 + String.to_integer(diff)))}
end
end
Use the ~V
sigil instead of ~H
and your LiveView will be Vue instead of an HEEx template.
Lazy loading Vue components is fully supported. You just need to return function returning promise in components
passed to getHooks(components)
.
It can be done by using eager: false
in import.meta.glob('./yourdir/*.vue', { eager: false, import: 'default' })
or by explicitly constructing components object. If SSR is enabled, all related JS and CSS files will be preloaded in HTML.
import component1 from "./Component1.vue"
import component2 from "./Component2.vue"
const entryComponents = {
Component1: component1,
Component2: component2,
Component3Lazy: () => import("./Component3.vue"),
}
// in app.js
const hooks = getHooks(entryComponents)
If you want to initialize Vue app in any way, by eg. adding plugins or directives, you can customize it easily in assets/vue/index.js
setup function.
// in assets/vue/index.js
// ...
// import { createPinia } from "pinia"
// const pinia = createPinia()
export default createLiveVue({
resolve: name => {
// ...
},
setup: ({ createApp, component, props, slots, plugin, el }) => {
const app = createApp({ render: () => h(component, props, slots) })
app.use(plugin)
// add your own plugins here
// app.use(pinia)
app.mount(el)
return app
},
})
You can completely change the default initialization method by adjusting setup
to your needs.
Note: setup
is called also in SSR mode. You can adjust initialization based on ssr
flag passed as an argument to setup.
export default createLiveVue({
setup: ({ createApp, component, props, slots, plugin, el, ssr }) => {
const app = createApp({ render: () => h(component, props, slots) })
if (ssr) { console.log("Creating app for SSR") }
app.use(plugin)
app.mount(el)
return app
},
})
Context object passed to setup
has following keys:
Property | Descriptor |
---|---|
createApp | Either createApp() or createSSRApp() depending on whether or not SSR is enabled |
component | The vue compoenent that is to be rendered |
props | The props passed to the component |
slots | The slots passed to the component |
plugin | A live_vue plugin that makes it possible to use useLiveVue provider |
el | The html element in which the vue app should be mounted |
ssr | Boolean indicating if setup is running in SSR or not |
This project is heavily inspired by ✨ LiveSvelte ✨. Both projects try to solve the same problem. LiveVue was started as a fork of LiveSvelte with adjusted ESbuild settings, and evolved to use Vite and a slightly different syntax. I strongly believe more options are always better, and since I love Vue and it's ecosystem I've decided to give it a go 😉
You can read more about differences between Vue and Svelte in FAQ.
Ensure you have node installed. Clone the repo and run mix setup
. You can then run mix assets.watch
to start a watcher for the assets.
You can use /example_project
as a way to test live_vue
locally.
You can also use your own project.
Clone live_vue
to the parent directory of the project you want to test it in.
Inside mix.exs
{:live_vue, path: "../live_vue"},
Inside assets/package.json
"live_vue": "file:../../live_vue",
Make the changes in /assets/js
and run:
mix assets.build
Or run the watcher:
mix assets.watch
Release is done with expublish
package.
RELEASE.md
fileINSTALLATION.md
Run
git add INSTALLATION.md
git commit -m "INSTALLATION version bump"
# to ensure everything works fine
mix expublish.minor --dry-run --allow-untracked --branch=main
# to publish everything
mix do assets.build, expublish.minor --allow-untracked --branch=main
Deploying a LiveVue app is the same as deploying a regular Phoenix app, except that you will need to ensure that nodejs
(version 19 or later) is installed in your production environment.
The below guide shows how to deploy a LiveVue app to Fly.io, but similar steps can be taken to deploy to other hosting providers. You can find more information on how to deploy a Phoenix app here.
The following steps are needed to deploy to Fly.io. This guide assumes that you'll be using Fly Postgres as your database. Further guidance on how to deploy to Fly.io can be found here.
Dockerfile
:mix phx.gen.release --docker
Dockerfile
to install curl
, which is used to install nodejs
(version 19 or greater), and also add a step to install our npm
dependencies:# ./Dockerfile
...
# install build dependencies
- RUN apt-get update -y && apt-get install -y build-essential git \
+ RUN apt-get update -y && apt-get install -y build-essential git curl \
&& apt-get clean && rm -f /var/lib/apt/lists/*_*
+ # install nodejs for build stage
+ RUN curl -fsSL https://deb.nodesource.com/setup_19.x | bash - && apt-get install -y nodejs
...
COPY assets assets
+ # install all npm packages in assets directory
+ RUN cd /app/assets && npm install
...
# start a new build stage so that the final image will only contain
# the compiled release and other runtime necessities
FROM ${RUNNER_IMAGE}
RUN apt-get update -y && \
- apt-get install -y libstdc++6 openssl libncurses5 locales ca-certificates \
+ apt-get install -y libstdc++6 openssl libncurses5 locales ca-certificates curl \
&& apt-get clean && rm -f /var/lib/apt/lists/*_*
+ # install nodejs for production environment
+ RUN curl -fsSL https://deb.nodesource.com/setup_19.x | bash - && apt-get install -y nodejs
...
Note: nodejs
is installed BOTH in the build stage and in the final image. This is because we need nodejs
to install our npm
dependencies and also need it when running our app.
fly launch
y
:? Do you want to tweak these settings before proceeding? (y/N) y
This will launch a new window where you can tweak your launch settings. In the database section, choose Fly Postgres
and enter a name for your database. You may also want to change your database to the development configuration to avoid extra costs. You can leave the rest of the settings as-is unless you want to change them.
Deployment will continue once you hit confirm.
fly apps open
Yes, I noticed it slightly too late to change. Some helpful reddit users pointed it out 😉
I'd suggest referring to it as LiveVuejs
in speech, to avoid confusion.
Both LiveVue
and LiveSvelte
serves the same purpose and are implemented in a very similar way. Here is a list of points to consider when choosing one over another:
ref
.Vue files in LiveVue have similar role as HEEX templates. In many cases it makes sense to colocate them next to your LiveViews for better DX.
You don't need to do anything to make it work, simply place your Vue files inside lib/my_app_web
directory and reference them by their names or relative paths.
The idea is fairly simple.
div
with props, slots and handlers as data
attributes. In live views these are kept in sync. When SSR is enabled, it also renders the component and inlines the result in the HTML.LiveVue
hook mount
callback initializes the element. It hooks up all the handlers, injects hook itself so useLiveVue
works correctly, and mounts the Vue component.One thing to keep in mind is that hooks are fired only after app.js
is fully loaded, so it might cause some delays of the initial render of the component.
LiveVue introduces a number of interesting optimizations:
__changed__
assign.data-props={"#{@props |> Jason.encode()}"}
syntax (notice String interpolation) to avoid sending data-props=
on each updateAs explained in the previous section, it takes a moment for Vue component to initialize, even if props are already inlined in the HTML.
It's done only during a "dead" render, without connected socket. It's not needed when doing live navigation - in my experience when using <.link navigate="...">
component is rendered before displaying a new page.
You can. the library provides good type definitions. you can use the tsconfig.json in the example project, and check example_project/assets/ts_config_example
for typescript versions of the LiveVue entrypoint file, tailwindcss setup and vite config.
You can also switch server.js to typescript but you will have to make sure to pass the entrypoint
property to the LiveVue Vite plugin, and update your package.json build script accordingly.
The only thing that is tough to convert to typescript is the assets/js/app.js
file. Since this config removes esbuild with vite instead, this is not trivial to achieve. But if you want your app's entrypoint to be in typescript, you can simply write the code in another ts file, and have app.js only import and execute a function from that file.
v-on
handlers.usePushEvent
- an utility similar to useFetch
making it easy to get data from &handle_event/3 -> {:reply, data, socket}
responsesuseLiveForm
- an utility to efforlessly use Ecto changesets & server-side validation, similar to HEEXuseEventHandler
- an utility automatically attaching & detaching handleEvent
json_patch
diffs of updated props~V
sigil