DATAMIMIC Community Edition

0

šŸ§  AI-powered test data generation platform enabling developers to create realistic, scalable, and privacy-compliant test data. Features model-driven data generation, GDPR compliance, and seamless Pā€¦

Productivity

faker
data-simulation
data-privacy
data-generation

DATAMIMIC Community Edition

Maintainability Rating Reliability Rating Security Rating Coverage License: MIT Python Version GitHub Stars GitHub Forks PyPI version Downloads

Introduction

Welcome to DATAMIMIC Community Edition, the AI-powered platform that revolutionizes test data generation! By leveraging advanced AI and model-driven technologies, DATAMIMIC enables developers and testers to create realistic, scalable, and privacy-compliant test data with ease.

Watch the video


Key Features

  • šŸ§  Model-Driven Data Generation: Utilize sophisticated algorithms to simulate real-world data scenarios.
  • šŸ”® AI-Powered Data Generation: Simulate real-world data scenarios using cutting-edge AI algorithms. (Like GANs, LLMs, and more)
  • šŸ›”ļø Data Privacy Compliance: Anonymize and pseudonymize data to meet GDPR and global data protection standards.
  • šŸš€ High Performance: Engineered for scalability to handle complex datasets efficiently.
  • šŸ Seamless Python Integration: Easily integrate with Python projects and manage dependencies.
  • āš™ļø Extensibility: Customize and extend functionalities to suit your specific testing needs.

Note: The Community Edition focuses on core functionalities and does not include AI-powered features like automatic model generation. These advanced features are available in the Enterprise Edition.


Why Use DATAMIMIC?

Traditional test data generation can be time-consuming and may compromise data privacy. DATAMIMIC addresses these challenges by:

  • Reducing Time-to-Market: Quickly generate test data without manual intervention.
  • Enhancing Test Coverage: Simulate diverse data scenarios for comprehensive testing.
  • Ensuring Compliance: Maintain data privacy and comply with legal regulations.
  • Improving Data Quality: Generate realistic data that mirrors production environments.

Installation

Prerequisites

  • Operating System: Windows, macOS, or Linux
  • Python: Version 3.10 or higher
  • Optional: uv Package Manager for development setup GitHub

User Installation

The simplest way to get started with DATAMIMIC is through pip:

pip install datamimic-ce

Verify the installation:

datamimic --version

Developer Installation

For contributors and developers who want to work with the source code:

  1. Install uv Package Manager:

    pip install uv
    
  2. Clone and set up the repository:

    git clone https://github.com/rapiddweller/datamimic.git
    cd datamimic
    uv sync
    

Usage Guide

Basic Usage

  1. Create a new data generation project:

    datamimic init my-project
    cd my-project
    
  2. Configure your data model in datamimic.xml:

    <setup>
        <generate name="datamimic_user_list" count="100" target="CSV,JSON">
            <variable name="person" entity="Person(min_age=18, max_age=90, female_quota=0.5)"/>
            <key name="id" generator="IncrementGenerator"/>
            <key name="first_name" script="person.given_name"/>
            <key name="last_name" script="person.family_name"/>
            <key name="gender" script="person.gender"/>
            <key name="birthDate" script="person.birthdate" converter="DateFormat('%d.%m.%Y')"/>
            <key name="email" script="person.family_name + '@' + person.given_name + '.de'"/>
            <key name="ce_user" values="True, False"/>
            <key name="ee_user" values="True, False"/>
            <key name="datamimic_lover" constant="DEFINITELY"/>
        </generate>
    </setup>
    
  3. Generate data:

    datamimic run datamimic.xml
    
  4. Access the generated data in the output directory.

    json export:

    [
    {"id": 1, "first_name": "Mary", "last_name": "Mcgowan", "gender": "female", "birthDate": "1946-05-15T00:00:00", "email": "Mcgowan@Mary.de", "ce_user": false, "ee_user": true, "datamimic_lover": "DEFINITELY"},
    {"id": 2, "first_name": "Gabrielle", "last_name": "Malone", "gender": "female", "birthDate": "1989-11-27T00:00:00", "email": "Malone@Gabrielle.de", "ce_user": false, "ee_user": true, "datamimic_lover": "DEFINITELY"},
    {"id": 4, "first_name": "Margaret", "last_name": "Torres", "gender": "female", "birthDate": "2006-07-13T00:00:00", "email": "Torres@Margaret.de", "ce_user": false, "ee_user": false, "datamimic_lover": "DEFINITELY"},
    {"id": 5, "first_name": "Monica", "last_name": "Meyers", "gender": "female", "birthDate": "1983-07-22T00:00:00", "email": "Meyers@Monica.de", "ce_user": true, "ee_user": false, "datamimic_lover": "DEFINITELY"},
    {"id": 6, "first_name": "Jason", "last_name": "Davis", "gender": "male", "birthDate": "1941-07-05T00:00:00", "email": "Davis@Jason.de", "ce_user": true, "ee_user": false, "datamimic_lover": "DEFINITELY"},
    {"...":  "..."},
    {"id": 100, "first_name": "Jared", "last_name": "Rivas", "gender": "male", "birthDate": "1975-03-16T00:00:00", "email": "Rivas@Jared.de", "ce_user": true, "ee_user": true, "datamimic_lover": "DEFINITELY"}
    ]
    

    csv export:

    id|first_name|last_name|gender|birthDate|email|ce_user|ee_user|datamimic_lover
    1|Mary|Mcgowan|female|1946-05-15 00:00:00|Mcgowan@Mary.de|False|True|DEFINITELY
    2|Gabrielle|Malone|female|1989-11-27 00:00:00|Malone@Gabrielle.de|False|True|DEFINITELY
    3|Antonio|Davis|male|2005-05-12 00:00:00|Davis@Antonio.de|False|True|DEFINITELY
    4|Margaret|Torres|female|2006-07-13 00:00:00|Torres@Margaret.de|False|False|DEFINITELY
    5|Monica|Meyers|female|1983-07-22 00:00:00|Meyers@Monica.de|True|False|DEFINITELY
    ...
    100|Jason|Davis|male|1941-07-05 00:00:00|Davis@Jason.de|True|False|DEFINITELY
    

Advanced Features

DATAMIMIC supports various advanced features:

  • Custom Generators: Create your own data generators
  • Data Relationships: Define complex relationships between entities
  • Import/Export Formats CE: Support for JSON, XML, CSV, RDBMS and MongoDB
  • Import/Export Formats EE: Kafka, EDI, XSD and more
  • Data Anonymization: Anonymize data to comply with privacy regulations
  • Data Validation: Define and enforce data validation rules
  • Scripting: Extend functionality using Python scripts
  • Database Integration: Connect to databases for seamless data generation
  • Model-Driven Generation: Utilize models to generate realistic data
  • Validation Rules: Define and enforce data validation rules
  • Scripting: Extend functionality using Python scripts

Examples and Demos

Explore our demo collection:

# List available demos
datamimic demo list

# Run a specific demo
datamimic demo create demo-model
datamimic run ./demo-model/datamimic.xml

Key demos include:

  • Basic entity generation
  • Complex relationships
  • Database integration
  • Custom generator creation
  • Privacy compliance examples

Find more examples in the datamimic_ce/demos directory.


Contributing

We ā¤ļø contributions! Here's how you can help:

  • Code Contributions: Submit pull requests for new features or bug fixes.
  • Documentation: Improve existing docs or help with translations.
  • Community Engagement: Join discussions and support other users.

Check out our Contribution Guidelines and Code of Conduct.


License

DATAMIMIC CE is now open source and licensed under MIT:

  • šŸ“„ Open Source License: Licensed under the MIT License
  • šŸ†“ Free for Everyone: Use freely for both personal and commercial projects
  • šŸ’” Key Permissions:
    • Commercial use
    • Modification
    • Distribution
    • Private use

For questions or support, contact us at info@rapiddweller.com.


Support

Need help or have questions? We're here for you!


Connect with Us

Stay updated and connect with our community!


Acknowledgments

A big thank you to all our contributors! Your efforts make DATAMIMIC possible.


Don't forget to ā­ star and šŸ‘€ watch this repository to stay updated!


Legal Notices

For detailed licensing information, please see the LICENSE file.